H(173) in compound (1), H(71), H(72) and H(73) in (2)] were refined with slack constraints [C—H = 1.09 (5) Å]. Data collection: CAD-4F software. Programs used to solve structures: *SHELXS86* (Sheldrick, 1986) and *SIR88* (Burla, Camalli, Cascarano, Giacovazzo, Polidori, Spagna & Viterbo, 1989). Program used to refine structures: *CRYSTALS* (Watkin, Carruthers & Betteridge, 1985). Drawings prepared using *ORTEP*II (Johnson, 1976).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, complete geometry and least-squares-planes data, have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55871 (20 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: DU1007]

References

- Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.
- Gourdon, A. (1992). In preparation.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- Tapolsky, G., Robert, F. & Launay, J. P. (1988). New J. Chem. 12, 761-764.
- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1985). CRYSTALS. An advanced crystallographic computer program. Chemical Crystallography Laboratory, Univ. of Oxford, England.

Acta Cryst. (1993). C49, 1013-1015

Structure of an Overcrowded Molecule, Benzylideneanthrone, at 193 K

RATNA GHOSH, V. M. LYNCH, S. H. SIMONSEN, R. S. PRASAD AND R. M. ROBERTS

Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA

(Received 30 April 1992; accepted 24 November 1992)

Abstract

The central six-membered ring of the anthrone in 10benzylidene-9(10*H*)-anthracenone assumes a boat conformation because of close interactions with the benzylidene moiety. Other manifestations of the overcrowding are the 6.1° twist around the double bond, the -49.5° rotation of the phenyl ring, and the increase of the C10a-C10-C11 angle to 124.1°.

0108-2701/93/051013-03\$06.00

Comment

In continuation of the investigation (Roberts, Anderson, Khalaf & Low, 1971; Roberts, Bantel & Low, 1973; Khalaf & Roberts, 1972; Low & Roberts, 1973; Roberts & Abdel-Baset, 1976; Prasad & Roberts, 1991) of Freidel-Crafts intramolecular cyclialkylations, the title compound (I) was prepared in order to study its reaction with acid catalysts. Synthesis was accomplished in a condensation

reaction by passing a stream of dry HCl into a stirred mixture of anthrone and benzaldehyde in a Claisen flask heated on a water bath. The product was crystallized from ethanol; the crystals were filtered, washed with a small volume of ethanol and dried. The molecule consists of an anthrone unit linked with a benzylidene moiety. All the rings are planar except the central ring (C4a, C9a, C9, C8a, C10a, C10) which has a boat conformation. The rings (1) (C5, C6, C7, C8, C8a, C10a) and (2) (C1, C2, C3, C4, C4a, C9a) are folded by 14.1 and 9.8° from the plane C4a-C9a-C8a-C10a, respectively. Ring (1) is involved in many short intramolecular contacts with ring (3) (C12, C13, C14, C15, C16, C17) (see below), and is bent downwards to a greater extent than ring (2). The dihedral angle between rings (1) and (2) is 156.2° , which is very similar to the angles found in 10-dicyanomethyleneanthrone (152°) and dianthronylideneethane (159.8 and 162.4°) (Silverman & Yannoni, 1967). Compounds exhibiting more severe overcrowding have smaller dihedral angles: α bromo-9-(p-methoxybenzylidene)anthrone (139.6°) and α -tosyloxy-9-(p-methoxybenzylidene)anthrone (148.6°) (Kaftory, Apeloig & Rappaport, 1985); and dianthronylidene (131.9°) (Harnik & Schmidt, 1954). The double bond is twisted by 6.1°, as given by the *cis*-torsion angle, C12-C11-C10-C10a. Phenyl ring (3) is rotated around the C12-C11 bond as evidenced by the C10-C11-C12-C13 torsion angle of -49.5°. Many close interactions are observed as a result of overcrowding with atoms of the anthrone group interacting with the benzylidene group. These distances are: $O \cdots H1 = 2.475$; $O \cdot \cdot \cdot H8 = 2.508; C4 \cdot \cdot \cdot H11 = 2.555; C5 \cdot \cdot \cdot C12 = 3.098;$ $C5 \cdot \cdot \cdot C13 = 3.152; C5 \cdot \cdot \cdot H13 = 3.066; C10 \cdot \cdot \cdot H13 =$ 3.073; C11···H4 = 2.687; C11···H5 = 2.778; C12···H5 = 2.544; C13···C10a = 3.336; C13···H5 = 2.804; C10a···H13 = 3.024; H4···H11 = 2.069; H11···H17 = 2.597 Å. As part of the mechanism to relieve over-

© 1993 International Union of Crystallography

crowding, angles C10—C4a—C4 [122.0 (3)°] and C10— C10a—C5 [122.5 (3)°] have opened somewhat, resulting in narrowing of the angle C10a—C10—C4a to 115.9 (2)°. The angle C10a—C10—C11 *cis* to ring (3) is 124.1 (2)° compared to the *trans* angle, C4a—C10—C11, of 119.8 (2)°, indicating a bending of ring (3) away from ring (1). These interactions are alleviated by folding of the central ring, by a twist around the C=C bond, and rotation of the phenyl ring (3) around the C11—C12 bond.

Fig. 1. View of $C_{21}H_{14}O$ showing the labelling of the non-H atoms. Thermal ellipsoids are shown at 30% probability levels; H atoms are drawn as small circles of arbitrary radii.

Fig. 2. Packing diagram of $C_{21}H_{14}O$. The view is approximately down the *b* axis.

Experimental

Crystal data $C_{21}H_{14}O$ $M_r = 282.34$ Monoclinic $P2_1/c$ a = 11.953 (3) Å b = 7.116 (1) Å c = 17.626 (4) Å $\beta = 108.95$ (2)° V = 1417.9 (5) Å³ Z = 4

Data collection

Nicolet R3 diffractometer ω -scans 7079 measured reflections 3280 independent reflections 1866 observed reflections

 $[F > 4.0\sigma(I)]$

 $R_{\rm int} = 0.0216$ $\theta_{\rm max} = 27.5^{\circ}$

Refinement

0 C1 C2 C3 C4

C4a C5 C6 C7 C8 C8a C9 C9a C10

C10a

C11

Refinement on F [1] Final R = 0.0541 wR = 0.0592 S = 1.18 [2] 256 parameters All H-atom parameters refined $w = 1/[\sigma^2(F) + 0.00089F^2]$ $(\Delta/\sigma)_{max} = 0.0742$ $\Delta\rho_{max} = 0.33 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$

 $D_x = 1.323 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 32 reflections $\theta = 7.93-11.92^{\circ}$ $\mu = 0.74 \text{ mm}^{-1}$ T = 193 KPentagonal plate $0.31 \times 0.31 \times 0.11 \text{ mm}$ Yellow

- $h = -16 \rightarrow 16$ $k = 0 \rightarrow 10$ $l = -23 \rightarrow 23$ 4 standard reflections monitored every 96 reflections intensity variation: 1.56%
- Extinction correction: $F^* = F[1+0.002\chi F^2 / sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0010 (4) Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

Data collection: SHELXTL-Plus (Sheldrick, 1991). Cell refinement: SHELXTL-Plus. Data reduction: SHELXTL-Plus. Program(s) used to solve structure: SHELXTL-Plus. Program(s) used to refine structure: SHELXTL-Plus. Molecular graphics: SHELXTL-Plus. Software used to prepare material for publication: PLATON (Spek, 1990).

 Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²)

$$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	z	U_{eq}
0.5857 (2)	0.2046 (3)	0.14317 (12)	0.0480 (8)
0.6279 (2)	0.1680 (4)	0.3088 (2)	0.0342 (9)
0.6445 (3)	0.1534 (4)	0.3893 (2)	0.0379 (10)
0.5476 (3)	0.1504 (4)	0.4154 (2)	0.0372 (10)
0.4341 (2)	0.1615 (4)	0.3614 (2)	0.0353 (10)
0.4150 (2)	0.1769 (3)	0.2790 (2)	0.0282 (8)
0.1752 (2)	0.0710 (4)	0.0833 (2)	0.0379 (10)
0.1665 (3)	0.0221 (5)	0.0062 (2)	0.0438 (11)
0.2615 (3)	0.0426 (5)	-0.0218 (2)	0.0435 (12)
0.3679 (3)	0.1035 (4)	0.0305 (2)	0.0376 (10)
0.3802 (2)	0.1473 (3)	0.1095 (2)	0.0293 (9)
0.5003 (2)	0.1840 (3)	0.1664 (2)	0.0317 (9)
0.5137 (2)	0.1774 (3)	0.2529 (2)	0.0293 (8)
0.2944 (2)	0.1954 (3)	0.2197 (2)	0.0281 (8)
0.2815 (2)	0.1393 (3)	0.1365 (2)	0.0286 (8)
0.2063 (2)	0.2674 (4)	0.2426 (2)	0.0316 (9)

101

C12	0.0845(2)	0 3235 (4)	0 1042 (2)	0.0200.00
C13	0.0626 (2)	0.3233(4)	0.1342 (2)	0.0290 (9)
C14	0.0020 (2)	0.4364 (4)	0.1275 (2)	0.0351 (10)
014	-0.0512 (3)	0.4974 (5)	0.0852 (2)	0.0439 (12)
CIS	-0.1447 (3)	0.4378 (5)	0.1085 (2)	0.0456 (11)
C16	-0.1248 (3)	0.3249 (5)	0.1750 (2)	0.0440 (11)
C17	-0.0108 (2)	0.2696 (4)	0.2182(2)	0.0386 (10)

Table 2. *Geometric parameters* (Å, °)

0—С9	1.226 (4)	C8aC9	1,483 (3)
C1C2	1.372 (4)	C8a-C10a	1,408 (4)
C1C9a	1.401 (3)	C9C9a	1.482 (4)
C2-C3	1.379 (5)	C10-C10a	1.479 (4)
C3-C4	1.383 (4)	C10-C11	1 346 (4)
C4—C4a	1.400 (4)	C11-C12	1.483 (3)
C4a—C9a	1.398 (4)	C12-C13	1.385 (4)
C4a—C10	1.486 (3)	C12-C17	1.392 (4)
C5C6	1.373 (5)	C13-C14	1.387 (4)
C5—C10a	1.400 (3)	C14—C15	1.377 (5)
C6C7	1.385 (5)	C15-C16	1.376 (5)
C7C8	1.376 (4)	C16-C17	1.385 (4)
C8—C8a	1.388 (4)		
C2-C1-C9a	120.8 (3)	C1C9aC9	118.7 (3)
C1-C2-C3	119.4 (2)	C4aC9aC9	121.1 (2)
C2-C3-C4	120.8 (3)	C10a-C10-C11	124.1 (2)
C3C4C4a	120.8 (3)	C10a-C10-C4a	115.9 (2)
C4—C4a—C9a	118.0 (2)	C4a-C10-C11	119.8 (2)
C4—C4a—C10	122.0 (3)	C5-C10a-C8a	117.7 (3)
C9a—C4a—C10	119.9 (2)	C5-C10a-C10	122.5 (3)
C6—C5—C10a	120.7 (3)	C8a-C10a-C10	119.7 (2)
C5—C6—C7	121.3 (3)	C12-C11-C10	130.3 (3)
C6—C7—C8	118.8 (3)	C13-C12-C17	118.2 (2)
C7—C8—C8a	121.1 (3)	C13-C12-C11	121.8 (3)
C8—C8a—C9	118.7 (3)	C17-C12-C11	119.8 (2)
C8C8aC10a	120.2 (2)	C14-C13-C12	121.1 (3)
C9—C8a—C10a	120.8 (2)	C15-C14-C13	119.7 (3)
C9a—C9—O	121.6(2)	C16-C15-C14	120.1 (3)
C9a—C9—C8a	116.6 (2)	C17-C16-C15	120.1 (3)
0—C9—C8a	121.6 (3)	C12-C17-C16	120.7 (3)
C1—C9a—C4a	120.2 (3)		

SHS and PMR acknowledge the support of the Robert A. Welch Foundation (grant F-0017).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55778 (17 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH1020]

References

- Harnik, E. & Schmidt, G. M. J. (1954). J. Chem. Soc. pp. 3295-3302. Kaftory, M., Apeloig, Y. & Rappaport, Z. (1985). J. Chem. Soc. Perkin
- Trans. 2, pp. 29-37.
- Khalaf, A. A. & Roberts, R. M. (1972). J. Org. Chem. 37, 4227-4235.
- Low, C. -E. & Roberts, R. M. (1973). J. Org. Chem. 38, 1909-1913.
- Prasad, R. S. & Roberts, R. M. (1991). J. Org. Chem. 56, 2998-3000.
- Roberts, R. M. & Abdel-Baset, M. B. (1976). J. Org. Chem. 41, 1698-1701.
- Roberts, R. M., Anderson, G. P. Jr, Khalaf, A. A. & Low, C. -E. (1971). J. Org. Chem. 36, 3342-3345.
- Roberts, R. M., Bantel, K. -H. & Low, C. -E. (1973). J. Org. Chem. 38, 1903-1908.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1 Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
- Silverman, J. & Yannoni, N. F. (1967). J. Chem. Soc. B, pp. 194-202. Spek, A. L. (1990). 40th Meet. Am. Crystallogr. Assoc., New Orleans,
- LA, USA. Abstract PM04.

Acta Cryst. (1993). C49, 1015–1017

Structures of Pyrazole Derivatives. II. A Potential Bioisoster of Acetazolamide

J. IULEK[†] AND J. ZUKERMAN-SCHPECTOR^{*}

Instituto de Física e Química de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560 São Carlos, SP, Brazil

ELIEZER J. BARREIRO AND ANTONIO C. C. FREITAS

Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, Universidade Federal de Rio de Janeiro, 21941 Rio de Janeiro, RJ, Brazil

(Received 11 August 1992; accepted 15 Ocotber 1992)

Abstract

In 5-Chloro-3-methyl-1-phenyl-4-pyrazolesulphonamide, the phenyl and pyrazole rings are planar making a dihedral angle of 54.4 (2)°. The molecular packing involves an intermolecular hydrogen bond: N(3)…N(2ⁱ) = 2.951 (8), N(2ⁱ)…H'(N3) = 1.987 (6) Å, N(3)—H'(N3)…N(2ⁱ) = 154.8 (4)° [symmetry operation: (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$].

Comments

Among the sulfonamide derivatives commonly used as diuretics, one of the most important is acetazolamide (2) (de Stevens, 1963) which is commercially available in Brazil as DIAMOX (DEF, 1991). Because of the close bioisosteric relationship between the pyrazole and the 1,3,4-thiodiazole groups, and following a research program aimed at synthesizing functionalized potentially bioactive pyrazoles (Caracelli, Zukerman-Schpector, Barreiro & Freitas, 1992), compound (1) was prepared (Freitas, 1991). In order to determine its overall conformation a threedimensional crystal structure determination was undertaken.

† Permanent address: Departamento de Química, Universidade Estadual de Ponta Grossa, PR, Brazil.

© 1993 International Union of Crystallography